diplomsko delo
Jan Mikolič (Avtor), Aleš Holobar (Mentor), Denis Đonlagić (Komentor)

Povzetek

V diplomski nalogi skušamo ugotoviti, v kolikšni meri je možno zaznavati in klasificirati trke na jeklenicah daljnovodov z optičnim interferometrom. Na začetku predstavimo osnovne pojme interferometrije in opišemo uporabljen optični interferometer. V jedru diplomske naloge natančneje opišemo eksperimentalni protokol in obdelavo signalov. Nadaljujemo z implementacijo algoritmov za segmentacijo in klasifikacijo zajetih signalov ter predstavimo dobljene rezultate. Segmentacijo izvedemo v domeni števila prehodov signala skozi ničlo, za klasifikacijo pa uporabimo večplastno nevronsko mrežo z algoritmom vzvratnega učenja. Rezultati študije nakazujejo, da sta implementirani segmentacija in klasifikacija uspešni v 77 % izvedenih trkov različnih predmetov.

Ključne besede

interferometrija;obdelava signalov;klasifikacija;detekcija trkov;računalniški algoritmi;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Založnik: J. Mikolič
UDK: 004.421:528.872(043.2)
COBISS: 20869398 Povezava se bo odprla v novem oknu
Št. ogledov: 1651
Št. prenosov: 184
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Collision detection on transmission lines with optical interferometer
Sekundarni povzetek: We analyse feasibility of collision detection on transmission lines with optical interferometer. We first provide a brief introduction into interferometry, along with a description of the optical interferometer used for measurements in this study. Afterwards, we describe the conducted experimental protocol and signal processing methodology. The focus is on implementation of algorithms for signal segmentation and collision classification. We used zero-crossing algorithm to transform signals into segmentation domain. Classification of collisions is done with a multilayer neural network trained by the backpropagation algorithm. The results demonstrate an average success rate of 77% for segmentation and classification of collision with five different objects.
Sekundarne ključne besede: interferometry;signal processing;classification;collision detection;
URN: URN:SI:UM:
Vrsta dela (COBISS): Diplomsko delo/naloga
Komentar na gradivo: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije
Strani: XII, 34 str.
ID: 10862120
Priporočena dela:
, diplomska naloga univerzitetnega študijskega programa
, diplomska naloga univerzitetnega študijskega programa
, ni podatka o podnaslovu