Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2018 |
Tipologija: | 2.11 - Diplomsko delo |
Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
Založnik: | [M. Baltič] |
UDK: | 515.1 |
COBISS: | 18394969 |
Št. ogledov: | 753 |
Št. prenosov: | 251 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Hairy ball theorem |
Sekundarni povzetek: | In this thesis we show some facts about existence of a non vanishing continuous tangent vector field on a $n$-dimensional sphere. At first we explicitly construct such vector field or we indicate the non existence of such vector field at low dimensions and then we generalize the idea to higher dimensions. In the two-dimensional case we also examine other objects and point out the indicator that sets the number of isolated points at which the vector field vanishes. As a consequence of our main theorem we also prove the Brower fixed-point theorem. |
Sekundarne ključne besede: | mathematics;tangent vector fields;sphere;Brouwer fixed-point theorem;Euler characteristic; |
Vrsta dela (COBISS): | Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: | 0 |
Konec prepovedi (OpenAIRE): | 1970-01-01 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Strani: | 25 str. |
ID: | 10937952 |