Enej Ilievski (Avtor), Jacopo De Nardis (Avtor), Marko Medenjak (Avtor), Tomaž Prosen (Avtor)

Povzetek

We identify a class of one-dimensional spin and fermionic lattice models which display diverging spin and charge diffusion constants, including several paradigmatic models of exactly solvable strongly correlated many-body dynamics such as the isotropic Heisenberg spin chains, the FermiHubbard model, and the t-J model at the integrable point. Using the hydrodynamic transport theory, we derive an analytic lower bound on the spin and charge diffusion constants by calculating the curvature of the corresponding Drude weights at half filling, and demonstrate that for certain lattice models with isotropic interactions some of the Noether charges exhibit super-diffusive transport at finite temperature and half filling.

Ključne besede

kvantna statistična mehanika;neravnovesna statistična mehanika;difuzija;quantum statistical mechanics;nonequilibrium statistical mechanics;diffusion;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 536.93
COBISS: 3275876 Povezava se bo odprla v novem oknu
ISSN: 0031-9007
Št. ogledov: 786
Št. prenosov: 516
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantna statistična mehanika;neravnovesna statistična mehanika;difuzija;
Strani: str. 230602-1-230602-6
Letnik: ǂVol. ǂ121
Zvezek: ǂiss. ǂ23
Čas izdaje: 2018
DOI: 10.1103/PhysRevLett.121.230602
ID: 10993420