Povzetek

EEG-based brain-machine interfaces offer an alternative means of interaction with the environment relying solely on interpreting brain activity. They can not only significantly improve the life quality of people with neuromuscular disabilities, but also present a wide range of opportunities for industrial and commercial applications. This work focuses on the development of a real-time brain-machine interface based on processing and classification of motor imagery EEG signals. The goal was to develop a fast and reliable system that can function in everyday noisy environments. To achieve this, various filtering, feature extraction, and classification methods were tested on three data sets, two of which were recorded in a noisy public setting. Results suggested that the tested linear classifier, paired with band power features, offers higher robustness and similar prediction accuracy, compared to a non-linear classifier based on recurrent neural networks. The final configuration was also successfully tested on a real-time system.

Ključne besede

elektroencefalografija;vmesnik možgani-stroj;vmesnik možgani-računalnik;digitalno filtriranje;ekstrakcija značilk;klasifikacija;electroencephalography;brain-machine interface;brain-computer interface;motor imagery;digital filtering;feature extraction;classification;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.08 - Objavljeni znanstveni prispevek na konferenci
Organizacija: UL FS - Fakulteta za strojništvo
UDK: 681.5(045)
COBISS: 16494107 Povezava se bo odprla v novem oknu
ISSN: 1611-3349
Št. ogledov: 796
Št. prenosov: 647
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: elektroencefalografija;vmesnik možgani-stroj;vmesnik možgani-računalnik;digitalno filtriranje;ekstrakcija značilk;klasifikacija;
Vrsta dela (COBISS): Članek v reviji
Strani: f. 610-622
Zvezek: ǂVol. ǂ11307
Čas izdaje: 2018
DOI: 10.1007/978-3-030-04239-4_55
ID: 11029019