Povzetek

In this paper we are concerned with a class of double phase energy functionals arising in the theory of transonic flows. Their main feature is that the associated Euler equation is driven by the Baouendi-Grushin operator with variable coefficient. This partial differential equation is of mixed type and possesses both elliptic and hyperbolic regions. After establishing a weighted inequality for the Baouendi-Grushin operator and a related compactness property, we establish the existence of stationary waves under arbitrary perturbations of the reaction.

Ključne besede

Baouendi-Grushin operator;Caffarelli-Kohn-Nirenberg inequality;transonic flow;nonlinear eigenvalue problem;variable exponent;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 18652505 Povezava se bo odprla v novem oknu
ISSN: 0951-7715
Št. ogledov: 628
Št. prenosov: 411
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 2481-2495
Letnik: ǂVol. ǂ32
Zvezek: ǂno. ǂ7
Čas izdaje: 2019
DOI: 10.1088/1361-6544/ab0b03
ID: 11193173