Povzetek

In this work, we study the existence and multiplicity results for the following nonlocal-Kirchhoff problem: ▫$$\begin{cases} -\big(a-b \int_\Omega \frac{1}{p(x}|\nabla u|^{p(x)} dx \big) \; \text{div} (|\nabla u|^{p(x)-2} \nabla u) = \\ = \lambda |u|^{p(x)-2}u + g(x,u) & \text{in} \; \Omega \\ u=0 & \text{on} \; \partial \Omega \end{cases}$$▫ where ▫$a \ge b > 0$▫ are constants, ▫$\Omega \subset \mathbb{R}^N$▫ is a bounded smooth domain ▫$p \in C(\overline{\Omega})$▫, with ▫$N > p(x) > 1$▫, ▫$\lambda$▫ is a real parameter and ▫$g$▫ is a continuous function. The analysis developed in this paper proposes an approach based on the idea of considering a new nonlocal term which presents interesting difficulties.

Ključne besede

variable exponent;nonlocal Kirchhoff equation;p(x)-Laplacian operator;Palais-Smale condition;Mountain Pass theorem;Fountain theorem;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 18706265 Povezava se bo odprla v novem oknu
ISSN: 0362-546X
Št. ogledov: 523
Št. prenosov: 339
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 111598 ( 15 str.)
Zvezek: ǂVol. ǂ190
Čas izdaje: Jan. 2020
DOI: 10.1016/j.na.2019.111598
ID: 11210442