diplomsko delo
David Nabergoj (Avtor), Matjaž Kukar (Mentor)

Povzetek

V diplomski nalogi obravnavamo problem avtomatskega merjenja dolžin smučarskih skokov na podlagi videoposnetkov. Postopek razdelimo na dva podproblema: napovedovanje trenutka doskoka in določanje dolžine skoka. Prvega rešujemo s konvolucijsko nevronsko mrežo, ki za dano sličico videoposnetka skoka napove, ali je skakalec v zraku ali na tleh. Dolžino skoka določimo z uporabo klasičnih metod računalniškega vida, s katerimi najprej poiščemo točko stopal na sliki, nato pa z upoštevanjem oddaljenosti točke od merilnih črt pridobimo natančno dolžino. Konvolucijska nevronska mreža doseže klasifikacijsko točnost 93 %, celoten postopek določanja dolžine skoka pa srednjo absolutno napako 0.785 metra na relevantnem območju doskočišča. Napovedan trenutek doskoka se od resničnega razlikuje za približno eno sličico. Rezultati diplomske naloge pomenijo prispevek k razvoju sodobnih sistemov za avtomatsko meritev dolžin smučarskih skokov v realnem času.

Ključne besede

smučarski skoki;video meritve;meritve dolžin;globoko učenje;računalniški vid;računalništvo in informatika;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [D. Nabergoj]
UDK: 004.8:796.925(043.2)
COBISS: 1538309315 Povezava se bo odprla v novem oknu
Št. ogledov: 873
Št. prenosov: 394
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Automatic ski-jump distance measurement with deep neural networks
Sekundarni povzetek: We consider the problem of automatic video-based ski-jump distance measurement. The procedure is split into two subproblems: predicting the landing and determining the distance of the jump. To predict the landing, we use a convolutional neural network which takes an image of the ski-jump video as input and predicts whether the ski-jumper is in the air or on the ground. To determine the distance of the jump, we use classical computer vision methods which first find the location of the jumper's feet in the image and then use measurement lines to output the precise distance. The convolutional neural network achieves a classification accuracy of 93%. The complete procedure achieves a mean absolute error of 0.785 meters in the relevant landing area. The predicted landing and the actual landing differ by approximately one frame. The results of the thesis contribute to the development of modern real-time ski-jump distance measurement systems.
Sekundarne ključne besede: ski-jumping;video measurement;distance measurement;deep learning;computer vision;computer and information science;diploma;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 58 str.
ID: 11211148