Dušan Repovš (Avtor)

Povzetek

We study the degenerate elliptic equation ▫$$ -\operatorname{div}(|x|^\alpha \nabla u) = f(u) + t\phi(x) + h(x)$$▫ in a bounded open set ▫$\Omega$▫ with homogeneous Neumann boundary condition, where ▫$\alpha \in (0,2)$▫ and ▫$f$▫ has a linear growth. The main result establishes the existence of real numbers and ▫$t^\ast$▫ such that the problem has at least two solutions if ▫$t \leq t_\ast$▫, there is at least one solution if ▫$t_\ast < t \leq t^\ast$▫, and no solution exists for all ▫$t > t^\ast$▫. The proof combines a priori estimates with topological degree arguments.

Ključne besede

Ambrosetti-Prodi problem;degenerate potential;topological degree;anisotropic continuous media;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 18249305 Povezava se bo odprla v novem oknu
ISSN: 1072-6691
Št. ogledov: 421
Št. prenosov: 103
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. no. 41, str. 1-10
Zvezek: ǂVol. ǂ2018
Čas izdaje: 2018
ID: 11214239