Povzetek

This paper concerns with a class of elliptic equations on fractal domains depending on a real parameter. Our approach is based on variational methods. More precisely, the existence of at least two non-trivial weak (strong) solutions for the treated problem is obtained exploiting a local minimum theorem for differentiable functionals defined on reflexive Banach spaces. A special case of the main result improves a classical application of the Mountain Pass Theorem in the fractal setting, given by Falconer and Hu in [K. J. Falconer, J. Hu, Nonlinear elliptic equations on the Sierpiński gasket, J. Math. Anal. Appl. 240 (1999) 552-573].

Ključne besede

Sierpiński gasket;fractal domains;nonlinear elliptic equation;weak Laplacian;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL PEF - Pedagoška fakulteta
UDK: 517.95
COBISS: 17994841 Povezava se bo odprla v novem oknu
ISSN: 0022-247X
Št. ogledov: 509
Št. prenosov: 319
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 883-895
Letnik: ǂVol. ǂ452
Zvezek: ǂiss. ǂ2
Čas izdaje: 2017
DOI: 10.1016/j.jmaa.2017.03.032
ID: 11220308