delo diplomskega seminarja
Povzetek
Beta regresija je regresijski model, kjer je proučevana slučajna spremenljivka zvezna in zavzame vrednosti na intervalu $(0, 1).$ Predpostavimo, da ima slučajna spremenljivka beta porazdelitev, zato je beta regresija primerna za napovedovanje in analiziranje verjetnosti, deležev ali obetov. Transformacija podatkov omogoči uporabo modela tudi za vrednosti na intervalu $[a, b]$, pri čemer je $a < b$. Z beta regresijo se izognemo omejitvam homoskedastičnosti in simetričnosti, ki jih ima linearna regresija. V delu je obravnavan model beta regresije, opisano je pridobivanje cenilk za regresijske koeficiente po metodi največjega verjetja in izpeljana je Fisherjeva informacijska matrika. Predstavljeni so testi za preizkušanje domnev, intervali zaupanja in različne diagnostične metode, s katerimi preverimo ustreznost modela. Teorija beta regresije je aplicirana na primeru iz resničnega življenja in opisan je postopek regresijske analize v programu RStudio.
Ključne besede
matematika;beta regresija;transformirana linearna regresija;diagnostične metode;regresijska analiza;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2019 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[T. Ražić] |
UDK: |
519.2 |
COBISS: |
18740569
|
Št. ogledov: |
2109 |
Št. prenosov: |
222 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Beta regression |
Sekundarni povzetek: |
Beta regression is a regression model for a variable of interest that is continuous and restricted to the interval $(0,1)$. The dependent variable is beta distributed, therefore it is suitable for predicting and analysing probability, proportions or odd ratios. Data transformation enables the use of the model also for variables with values in interval $[a, b]$, where $a < b$. With beta regression we avoid the restrictions of linear regression like homoscedasticity and symmetry. Here we study the beta regression model, maximum likelihood estimation for regression parameters, and Fisher information matrix. We cover hypothesis testing, confidence intervals and different diagnostic measures in order to check the goodness-of-fit of the estimated model. We apply beta regression to real-life data and give a detailed description of the analysis steps in RStudio. |
Sekundarne ključne besede: |
mathematics;beta regression;transformed linear regression;diagnostic measures;regression analysis; |
Vrsta dela (COBISS): |
Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: |
0 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Strani: |
29 str. |
ID: |
11221158 |