| Jezik: | Slovenski jezik |
|---|---|
| Leto izida: | 2019 |
| Tipologija: | 2.11 - Diplomsko delo |
| Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
| Založnik: | [M. Šteblaj] |
| UDK: | 512 |
| COBISS: |
18725209
|
| Št. ogledov: | 1282 |
| Št. prenosov: | 209 |
| Ocena: | 0 (0 glasov) |
| Metapodatki: |
|
| Sekundarni jezik: | Angleški jezik |
|---|---|
| Sekundarni naslov: | Unique Factorization Domains |
| Sekundarni povzetek: | Unique Factorization Domains are integral domains in which nonzero elements that are not units can be written as a finite product of irreducible elements and this decomposition is unique up to associates and the order of factors. We have the following inclusions: fields $\subset$ Euclidean Domains $\subset$ Principal Ideal Domains $\subset$ Unique Factorization Domains $\subset$ integral domains with all containments being proper. Thus: fields, Euclidean Domains and Principal Ideal Domains are examples of Unique Factorization Domains. The polynomial ring $K[x]$ is a Unique Factorization Domain if and only if $K$ is a Unique Factorization Domain. |
| Sekundarne ključne besede: | mathematics;rings;factorization;fields;Euclidean domains;principal ideal domains;unique factorization domains;polynomial rings; |
| Vrsta dela (COBISS): | Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
| Študijski program: | 0 |
| Konec prepovedi (OpenAIRE): | 1970-01-01 |
| Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
| Strani: | 29 str. |
| ID: | 11223576 |