Taras Banakh (Avtor), Dušan Repovš (Avtor)

Povzetek

For every metric space ▫$X$▫ we introduce two cardinal characteristics ▫${\rm cov}^\flat(X)$▫ and ▫${\rm cov}^\sharp(X)$▫ describing the capacity of balls in ▫$X$▫. We prove that these cardinal characteristics are invariant under coarse equivalence and prove that two ultrametric spaces ▫$X,Y$▫ are coarsely equivalent if ▫${\rm cov}^\flat(X)={\rm cov}^\sharp(X)={\rm cov}^\flat(Y)={\rm cov}^\sharp(Y)$▫. This result implies that an ultrametric space ▫$X$▫ is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if ▫${\rm cov}^\flat(X)={\rm cov}^\sharp(X)$▫. Moreover, two isometrically homogeneous ultrametric spaces ▫$X,Y$▫ are coarsely equivalent if and only if ▫${\rm cov}^\sharp(X)={\rm cov}^\sharp(Y)$▫ if and only if each of these spaces coarsely embeds into the other space. This means that the coarse structure of an isometrically homogeneous ultrametric space ▫$X$▫ is completely determined by the value of the cardinal ▫${\rm cov}^\sharp(X)={\rm cov}^\flat(X)$▫.

Ključne besede

ultrametric space;isometrically homogeneous metric space;coarse equivalence;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 515.124
COBISS: 17652057 Povezava se bo odprla v novem oknu
ISSN: 0010-1354
Št. ogledov: 497
Št. prenosov: 313
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 189-202
Letnik: ǂVol. ǂ144
Zvezek: ǂno. ǂ2
Čas izdaje: 2016
DOI: 10.4064/cm6697-9-2015
ID: 11231230