Umed H. Karimov (Avtor), Dušan Repovš (Avtor)

Povzetek

The main results of this paper are: (1) If a space ▫$X$▫ can be embedded as a cellular subspace of ▫$\mathbb{R}^n$▫ then ▫$X$▫ admits arbitrary fine open coverings whose nerves are homeomorphic to the ▫$n$▫-dimensional cube ▫$D^n$▫. (2) Every ▫$n$▫-dimensional cell-like compactum can be embedded into ▫$(2n+1)$▫-dimensional Euclidean space as a cellular subset. (3) There exists a locally compact planar set which is acyclic with respect to Čech homology and whose fine coverings are all nonacyclic.

Ključne besede

planar acyclic space;cellular compactum;absolute neighborhood retract;nerve;fine covering;embedding into Euclidean space;Čech homology;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 515.164
COBISS: 16978521 Povezava se bo odprla v novem oknu
ISSN: 1660-5446
Št. ogledov: 433
Št. prenosov: 361
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 205-217
Letnik: ǂVol. ǂ12
Zvezek: ǂno. ǂ1
Čas izdaje: 2015
DOI: http://dx.doi.org/10.1007/s00009-014-0383-4
ID: 11233719
Priporočena dela:
, ni podatka o podnaslovu
, ni podatka o podnaslovu
, delo diplomskega seminarja
, minimum perfect unmixed phylogenies for multi-sampled tumors via branchings and ILP