Gernot Akemann (Avtor), Mario Kieburg (Avtor), Adam Mielke (Avtor), Tomaž Prosen (Avtor)

Povzetek

We study the transition between integrable and chaotic behavior in dissipative open quantum systems, exemplified by a boundary driven quantum spin chain. The repulsion between the complex eigenvalues of the corresponding Liouville operator in radial distance $s$ is used as a universal measure. The corresponding level spacing distribution is well fitted by that of a static two-dimensional Coulomb gas with harmonic potential at inverse temperature $\beta \in [0,2]$. Here, $\beta=0$ yields the two-dimensional Poisson distribution, matching the integrable limit of the system, and $\beta=2$ equals the distribution obtained from the complex Ginibre ensemble, describing the fully chaotic limit. Our findings generalize the results of Grobe, Haake, and Sommers, who derived a universal cubic level repulsion for small spacings $s$. We collect mathematical evidence for the universality of the full level spacing distribution in the fully chaotic limit at $\beta=2$. It holds for all three Ginibre ensembles of random matrices with independent real, complex, or quaternion matrix elements.

Ključne besede

kvantna mehanika;kvantni kaos;odprti kvantni sistemi;nelinearna dinamika;statistična fizika;quantum mechanics;quantum chaos;open quantum systems;nonlinear dynamics;statistical physics;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 530.182
COBISS: 3395940 Povezava se bo odprla v novem oknu
ISSN: 0031-9007
Št. ogledov: 588
Št. prenosov: 466
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantna mehanika;kvantni kaos;odprti kvantni sistemi;nelinearna dinamika;statistična fizika;
Strani: str. 254101-1-254101-6
Letnik: ǂVol. ǂ123
Zvezek: ǂiss. ǂ25
Čas izdaje: 2019
DOI: 10.1103/PhysRevLett.123.254101
ID: 11344507