Povzetek

We consider a nonlinear elliptic equation driven by the Robin ▫$p$▫-Laplacian plus an indefinite potential. In the reaction we have the competing effects of a strictly ▫$(p-1)$▫-sublinear parametric term and of a ▫$(p-1)$▫-linear and nonuniformly nonresonant term. We study the set of positive solutions as the parameter ▫$\lambda > 0$▫ varies. We prove a bifurcation-type result for large values of the positive parameter ▫$\lambda$▫. Also, we show that for all admissible ▫$\lambda > 0$▫, the problem has a smallest positive solution ▫$\overline{u}_\lambda$▫ and we study the monotonicity and continuity properties of the map ▫$\lambda \mapsto \overline{u}_\lambda$▫.

Ključne besede

local minimizers;p-Laplacian;strong comparison;positive solutions;nonlinear regularity;minimal solution;indefinite potential;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 32039427 Povezava se bo odprla v novem oknu
ISSN: 2189-3756
Št. ogledov: 297
Št. prenosov: 45
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 1217-1236
Letnik: ǂVol. ǂ5
Zvezek: ǂno. ǂ15
Čas izdaje: 2020
ID: 12072181