Ibrahem Kandel (Avtor), Mauro Castelli (Avtor)

Povzetek

Histopathology is the study of tissue structure under the microscope to determine if the cells are normal or abnormal. Histopathology is a very important exam that is used to determine the patients’ treatment plan. The classification of histopathology images is very difficult to even an experienced pathologist, and a second opinion is often needed. Convolutional neural network (CNN), a particular type of deep learning architecture, obtained outstanding results in computer vision tasks like image classification. In this paper, we propose a novel CNN architecture to classify histopathology images. The proposed model consists of 15 convolution layers and two fully connected layers. A comparison between different activation functions was performed to detect the most efficient one, taking into account two different optimizers. To train and evaluate the proposed model, the publicly available PatchCamelyon dataset was used. The dataset consists of 220,000 annotated images for training and 57,000 unannotated images for testing. The proposed model achieved higher performance compared to the state-of-the-art architectures with an AUC of 95.46%.

Ključne besede

Ni podatka o ključnih besedah

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL EF - Ekonomska fakulteta
UDK: 004:78
COBISS: 38419459 Povezava se bo odprla v novem oknu
ISSN: 2076-3417
Matična publikacija: Applied sciences
Št. ogledov: 373
Št. prenosov: 98
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-17
Letnik: ǂVol. ǂ10
Zvezek: ǂiss. ǂ8 (art. 2929)
Čas izdaje: 2020
DOI: 10.3390/app10082929
ID: 12365827