magistrsko delo
Boštjan Gec (Avtor), Ljupčo Todorovski (Mentor)

Povzetek

Algoritmi za odkrivanje enačb, ki uporabljajo verjetnostne gramatike, delujejo tako, da najprej vzorčijo strukture izrazov iz gramatike in nato na podlagi teh poiščejo enačbe, ki se najbolj prilegajo vhodnim podatkom. Strukture izrazov vzorčijo na podlagi verjetnosti, ki jih določa verjetnostna gramatika. Problem, ki ga srečamo pri tem je, da želimo tvoriti samo končne strukture in želimo imeti ustrezno verjetnostno porazdelitev na množici vseh možnih končnih struktur izrazov, ki jih tvori gramatika. Na srečo lahko v ta namen na verjetnostne gramatike gledamo kot na večtipske procese razvejanja. Za te obstaja izrek, ki pod določenimi pogoji pove, kdaj lahko ustrezno porazdelitev definiramo in kdaj ne. Poleg tega v magistrskem delu razvijem empirično okolje, ki omogoča uporabo omenjenih algoritmov za odkrivanje enačb v celoštevilskih zaporedjih iz Spletne enciklopedije celoštevilskih zaporedij (OEIS). Uporabo okolja ilustriram na odkrivanju enačb za štirinajst izbranih zaporedij iz OEIS.

Ključne besede

odkrivanje enačb;simbolna regresija;strojno učenje;verjetnostne kontekstno-neodvisne gramatike;večtipski procesi razvejanja;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [B. Gec]
UDK: 519.21:004
COBISS: 79059971 Povezava se bo odprla v novem oknu
Št. ogledov: 1223
Št. prenosov: 100
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Equation discovery for integer sequences with probabilistic grammars
Sekundarni povzetek: Equation discovery algorithms that are based on probabilistic grammars sample arithmetic expressions from the grammar that are then fitted to the input data, to become equations that describe that data. The arithmetical expressions are generated according to the probabilities encoded in the probabilistic grammar. The problem we encounter in this approach is that we consider only finite expressions and we try to define the corresponding probabilistic distribution on the space of the candidate finite expressions. Fortunately, probabilistic grammars can be seen as multitype branching processes. I present and partly prove a theorem that holds for multitype branching processes that tells us whether the grammar properly define the corresponding distribution or not. Furthermore, in this master thesis I design an empirical framework for applying the aforementioned algorithm to the task of discovery of equations that hold for integer sequences from The On-Line Encyclopedia of Integer Sequences (OEIS). I illustrate the use of the framework on discovery of equations for fourteen selected sequences from OEIS.
Sekundarne ključne besede: equation discovery;symbolic regression;machine learning;probabilistic context-free grammars;multitype branching processes;
Vrsta dela (COBISS): Magistrsko delo/naloga
Študijski program: 0
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja
Strani: VII, 52 str.
ID: 13600429