Tadej Škrjanc (Avtor), Rafael Mihalič (Avtor), Urban Rudež (Avtor)

Povzetek

This research represents a conceptual shift in the process of introducing flexibility into power system frequency stability-related protection. The existing underfrequency load shedding (UFLS) solution, although robust and fast, has often proved to be incapable of adjusting to different operating conditions. It triggers upon detection of frequency threshold violations, and functions by interrupting the electricity supply to a certain number of consumers, both of which values are decided upon beforehand. Consequently, it often does not comply with its main purpose, i.e., bringing frequency decay to a halt. Instead, the power imbalance is often reversed, resulting in equally undesirable frequency overshoots. Researchers have sought a solution to this shortcoming either by increasing the amount of available information (by means of wide-area communication) or through complex changes to all involved protection relays. In this research, we retain the existing concept of UFLS that performs so well for fast-occurring frequency events. The flexible rebalancing of power is achieved by a small and specialized group of intelligent electronic devices (IEDs) with machine learning functionalities. These IEDs interrupt consumers only when the need to do so is detected with a high degree of certainty. Their small number assures the fine-tuning of power rebalancing and, at the same time, poses no serious threat to system stability in cases of malfunction.

Ključne besede

strojno učenje;frekvenčna stabilnost elektroenergetskega sistema;razbremenjevanje bremen;zaščita elektroenergetskega sistema;machine learning;power system frequency stability;load shedding;power system protection;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FE - Fakulteta za elektrotehniko
UDK: 621.31:004
COBISS: 37324291 Povezava se bo odprla v novem oknu
ISSN: 1996-1073
Št. ogledov: 132
Št. prenosov: 145
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: strojno učenje;frekvenčna stabilnost elektroenergetskega sistema;razbremenjevanje;zaščita elektroenergetskega sistema;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-9
Letnik: ǂno. ǂ22
Zvezek: 5896
Čas izdaje: 2020
DOI: 10.3390/en13225896
ID: 14271469