Povzetek

A graph ▫$X$▫ is said to be distance-balanced if for any edge ▫$uv$▫ of ▫$X$▫, the number of vertices closer to ▫$u$▫ than to ▫$v$▫ is equal to the number of vertices closer to ▫$v$▫ than to ▫$u$▫. A graph ▫$X$▫ is said to be strongly distance-balanced if for any edge ▫$uv$▫ of ▫$X$▫ and any integer ▫$k$▫, the number of vertices at distance ▫$k$▫ from ▫$u$▫ and at distance ▫$k+1$▫ from ▫$v$▫ is equal to the number of vertices at distance ▫$k+1$▫ from ▫$u$▫ and at distance ▫$k$▫ from ▫$v$▫. Exploring the connection between symmetry properties of graphs and the metric property of being (strongly) distance-balanced is the main theme of this article. That a vertex-transitive graph is necessarily strongly distance-balanced and thus also distance-balanced is an easy observation. With only a slight relaxation of the transitivity condition, the situation changes drastically: there are infinite families of semisymmetric graphs (that is, graphs which are edge-transitive, but not vertex-transitive) which are distance-balanced, but there are also infinite families of semisymmetric graphs which are not distance-balanced. Results on the distance-balanced property in product graphs prove helpful in obtaining these constructions. Finally, a complete classification of strongly distance-balanced graphs is given for the following infinite families of generalized Petersen graphs: GP▫$(n,2)$▫, GP▫$(5k+1,k)$▫, GP▫$(3k 3,k)$▫, and GP▫$(2k+2,k)$▫.

Ključne besede

graph theory;graph;distance-balanced graphs;vertex-transitive;semysimmetric;generalized Petersen graph;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UP - Univerza na Primorskem
UDK: 519.17
COBISS: 1714391 Povezava se bo odprla v novem oknu
ISSN: 0012-365X
Št. ogledov: 4078
Št. prenosov: 89
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarne ključne besede: teorija grafov;razdaljno uravnoteženi grafi;polsimetrični grafi;posplošeni Petersenov graf;tranzitivni grafi;
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 1881-1894
Letnik: ǂVol. ǂ306
Zvezek: ǂiss. ǂ16
Čas izdaje: 2006
ID: 1471767
Priporočena dela:
, ni podatka o podnaslovu
, ni podatka o podnaslovu
, ni podatka o podnaslovu