Jezik: | Angleški jezik |
---|---|
Leto izida: | 2006 |
Tipologija: | 1.01 - Izvirni znanstveni članek |
Organizacija: | UM PEF - Pedagoška fakulteta |
UDK: | 519.17 |
COBISS: | 14028121 |
ISSN: | 0012-365X |
Št. ogledov: | 44 |
Št. prenosov: | 23 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Slovenski jezik |
---|---|
Sekundarni naslov: | O induciranih in izometričnih vložitvah grafov v krepke produkte poti |
Sekundarni povzetek: | The strong isometric dimension and the adjacent isometric dimension of graphs are compared. The concepts are equivalent for graphs of diameter 2 in which case the problem of determining these dimensions can be reduced to a covering problem with complete bipartite graphs. Using this approach several exact strong and adjacent dimensions are computed (for instance of the Petersen graph) and a positive answer is given to the Problem 4.1 of Fitzpatrick and Nowakowski [The strong isometric dimension of finite reflexive graphs, Discuss. Math. Graph Theory 20 (2000) 23-38] whether there is a graph ▫$G$▫ with the strong isometric dimension bigger that ▫$\lceil |V(G)|/2 \rceil$▫. |
Sekundarne ključne besede: | matematika;teorija grafov;krepki produkt grafov;krepka izometrična dimenzija;sosedna izometrična dimenzija; |
URN: | URN:SI:UM: |
Vrsta dela (COBISS): | Delo ni kategorizirano |
Strani: | str. 1358-1363 |
Letnik: | ǂVol. ǂ306 |
Zvezek: | ǂiss. ǂ13 |
Čas izdaje: | 2006 |
ID: | 1472805 |