Povzetek

A cycle decomposition of a graph ▫$\Gamma$▫ is a set ▫$\mathcal{C}$▫ of cycles of ▫$\Gamma$▫ such that every edge of ▫$\Gamma$▫ belongs to exactly one cycle in ▫$\mathcal{C}$▫. Such a decomposition is called arc-transitive if the group of automorphisms of ▫$\Gamma$▫ that preserve setwise acts transitively on the arcs of ▫$\Gamma$▫. In this paper, we study arc-transitive cycle decompositions of tetravalent graphs. In particular, we are interested in determining and enumerating arc-transitive cycle decompositions admitted by a given arc-transitive tetravalent graph. Among other results we show that a connected tetravalent arc-transitive graph is either 2-arc-transitive, or is isomorphic to the medial graph of a reflexible map, or admits exactly one cycle structure.

Ključne besede

matematika;teorija grafov;dekompozicija ciklov;grupa avtomorfizmov;mathematics;graph theory;cycle decomposition;automorphism group;consistent cycle;medial maps;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 519.17
COBISS: 14627417 Povezava se bo odprla v novem oknu
ISSN: 0095-8956
Št. ogledov: 1
Št. prenosov: 1
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: matematika;teorija grafov;dekompozicija ciklov;grupa avtomorfizmov;
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 1181-1192
Letnik: Vol. 98
Zvezek: no. 6
Čas izdaje: 2008
DOI: 10.1016/j.jctb.2008.01.005
ID: 1473513