Boštjan Brešar (Avtor), Manoj Changat (Avtor), Tanja Gologranc (Avtor), Joseph Mathews (Avtor), Antony Mathews (Avtor)

Povzetek

Problem prepoznavanja grafov pokritij-neprimerljivosti (to je grafov, ki jih dobimo iz delno urejenih množic kot povezavno unijo njihovega grafa pokritij in grafa neprimerljivosti) je NP-poln v splošnem, kot so dokazali v [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], medtem ko je na primer očitno polinomski v razredu dreves. V tem članku se osredotočimo na razrede tetivnih grafov in dokažemo, da je vsak graf pokritij-neprimerljivosti, ki je tetiven graf, kar graf intervalov. Okarakteriziramo tiste delno urejene množice, ki imajo za graf pokritij-neprimerljivosti bločni graf, oziroma razcepljeni graf in tudi okarakteriziramo grafe pokritij-neprimerljivosti med bločnimi, oziroma razcepljenimi grafi. Slednji karakterizaciji dasta tudi linearen algoritem za prepoznavanje bločnih, oziroma razcepljenih grafov, ki so grafi pokritij-neprimerljivosti.

Ključne besede

matematika;teorija grafov;delno urejena množica;temeljni graf;tetiven graf;razcepljen graf;bločni graf;mathematics;graph theory;poset;underlying graph;chordal graph;split graf;block graph;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 519.17
COBISS: 15656537 Povezava se bo odprla v novem oknu
ISSN: 0166-218X
Št. ogledov: 38
Št. prenosov: 14
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Neznan jezik
Sekundarni naslov: Grafi pokritij-neprimerljivosti in tetivni grafi
Sekundarni povzetek: The problem of recognizing cover-incomparability graphs (i.e. the graphs obtained from posets as the edge-union of their covering and incomparability graph) was shown to be NP-complete in general [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], while it is for instance clearly polynomial within trees. In this paper we concentrate on (classes of) chordal graphs, and show that any cover-incomparability graph that is a chordal graph is an interval graph. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block and split graphs, respectively. The latter characterizations yield linear time algorithms for the recognition of block and split graphs, respectively, that are cover-incomparability graphs.
URN: URN:SI:UM:
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 1752-1759
Letnik: Vol. 158
Zvezek: iss. 16
Čas izdaje: 2010
ID: 1475206