Povzetek

Inertial sensor-based step length estimation has become increasingly important with the emergence of pedestrian-dead-reckoning-based (PDR-based) indoor positioning. So far, many refined step length estimation models have been proposed to overcome the inaccuracy in estimating distance walked. Both the kinematics associated with the human body during walking and actual step lengths are rarely used in their derivation. Our paper presents a new step length estimation model that utilizes acceleration magnitude. To the best of our knowledge, we are the first to employ principal component analysis (PCA) to characterize the experimental data for the derivation of the model. These data were collected from anatomical landmarks on the human body during walking using a highly accurate optical measurement system. We evaluated the performance of the proposed model for four typical smartphone positions for long-term human walking and obtained promising results: the proposed model outperformed all acceleration-based models selected for the comparison producing an overall mean absolute stride length estimation error of 6.44 cm. The proposed model was also least affected by walking speed and smartphone position among acceleration-based models and is unaffected by smartphone orientation. Therefore, the proposed model can be used in the PDR-based indoor positioning with an important advantage that no special care regarding orientation is needed in attaching the smartphone to a particular body segment. All the sensory data acquired by smartphones that we utilized for evaluation are publicly available and include more than 10 h of walking measurements.

Ključne besede

model hoje;inercijski senzorji;javna podatkovna množica;pametni telefon;model za oceno dolžine koraka;gait model;inertial sensors;open-source dataset;smartphone;step length estimation model;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
UDK: 681.586:004.382.745
COBISS: 64014851 Povezava se bo odprla v novem oknu
ISSN: 1424-8220
Št. ogledov: 120
Št. prenosov: 44
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: model hoje;inercijski senzorji;javna podatkovna množica;pametni telefon;model za oceno dolžine koraka;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-22
Letnik: ǂVol. ǂ21
Zvezek: ǂno. ǂ10
Čas izdaje: May 2021
DOI: 10.3390/s21103527
ID: 14759907