delo diplomskega seminarja
Povzetek
Za kolobar $R$ definiramo komutirajoči graf $\Gamma(R)$ kot graf, v katerem so vozlišča necentralni elementi kolobarja $R$, dve vozlišči pa sta povezani natanko tedaj, ko pripadajoča elementa komutirata v $R$. Pokažemo, da je za kolobarje matrik nad poljem in $n \ge 3$, komutirajoči graf $\Gamma (M_n(F))$ povezan natanko tedaj, ko ima vsaka $F$-razširitev stopnje $n$ pravo vmesno polje. Nadalje pokažemo, da je $\Gamma (M_n(\mathbb{Q}))$ nepovezan $n \ge 2$. Dokažemo, da če je $\Gamma (M_n(F)))$ povezan, potem je njegov premer vsaj 4 in največ 6. Poiščemo nekaj primerov komutirajočih grafov s premerom 4. Dokažemo še, da če je $F$ končno polje in $n$ ni praštevilo ali kvadrat praštevila, je ${\rm diam}\,\Gamma (M_n(F)) \le 5$.
Ključne besede
matematika;komutirajoči graf;linearna algebra;matrike;Galoisova teorija;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2022 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[L. Sajovic] |
UDK: |
512 |
COBISS: |
101306115
|
Št. ogledov: |
851 |
Št. prenosov: |
39 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
The missing field |
Sekundarni povzetek: |
We define the commuting graph of ring $R$ as the graph $\Gamma(R)$ in which vertices are non-central elements of ring $R$. Two vertices are adjacent if and only if the corresponding elements commute in $R$. We show that for the ring of matrices over a field where $n \ge 3$ the commuting graph $\Gamma (M_n(F))$ is connected if and only if for every $F$-extension of degree $n$ exists a proper intermediate field. We also show that $\Gamma (M_n(\mathbb{Q}))$ is not connected for $n \ge 2$. We prove that if $\Gamma (M_n(F))$ is connected then $4 \le {\rm diam}\,\Gamma (M_n(F)) \le 6$. We find some examples of commuting graphs with diameter 4. We also prove that ${\rm diam}\,\Gamma (M_n(F)) \le 5$ if $F$ is a finite field and $n$ is not a prime nor square of a prime. |
Sekundarne ključne besede: |
mathematics;commuting graph;linear algebra;matrices;Galois theory; |
Vrsta dela (COBISS): |
Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: |
0 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Strani: |
29 str. |
ID: |
14785285 |