Povzetek

Edge computing brings artificial intelligence algorithms and graphics processing units closer to data sources, making autonomy and energy-efficient processing vital for their design. Approximate computing has emerged as a popular strategy for energy-efficient circuit design, where the challenge is to achieve the best tradeoff between design efficiency and accuracy. The essential operation in artificial intelligence algorithms is the general matrix multiplication (GEMM) operation comprised of matrix multiplication and accumulation. This paper presents an approximate general matrix multiplication (AGEMM) unit that employs approximate multipliers to perform matrix–matrix operations on four-by-four matrices given in sixteen-bit signed fixed-point format. The synthesis of the proposed AGEMM unit to the 45 nm Nangate Open Cell Library revealed that it consumed only up to 36% of the area and 25% of the energy required by the exact general matrix multiplication unit. The AGEMM unit is ideally suited to convolutional neural networks, which can adapt to the error induced in the computation. We evaluated the AGEMM units’ usability for honeybee detection with the YOLOv4-tiny convolutional neural network. The results implied that we can deploy the AGEMM units in convolutional neural networks without noticeable performance degradation. Moreover, the AGEMM unit’s employment can lead to more area- and energy-efficient convolutional neural network processing, which in turn could prolong sensors’ and edge nodes’ autonomy.

Ključne besede

približno računanje;logaritemski množilnik;računalniška aritmetika;energijsko učinkovito procesiranje;tensorsko jedro;approximate computing;logarithmic multiplier;computer arithmetic;energy-efficient processing;tensor core;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
UDK: 004
COBISS: 67593475 Povezava se bo odprla v novem oknu
ISSN: 1424-8220
Št. ogledov: 128
Št. prenosov: 40
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: približno računanje;logaritemski množilnik;računalniška aritmetika;energijsko učinkovito procesiranje;tensorsko jedro;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-19
Letnik: ǂVol. ǂ21
Zvezek: ǂno. ǂ12
Čas izdaje: Jun. 2021
DOI: 10.3390/s21124195
ID: 14808622