Stanko Kružić (Avtor), Josip Musić (Avtor), Roman Kamnik (Avtor), Vladan Papić (Avtor)

Povzetek

When a mobile robotic manipulator interacts with other robots, people, or the environment in general, the end-effector forces need to be measured to assess if a task has been completed successfully. Traditionally used force or torque estimation methods are usually based on observers, which require knowledge of the robot dynamics. Contrary to this, our approach involves two methods based on deep neural networks: robot end-effector force estimation and joint torque estimation. These methods require no knowledge of robot dynamics and are computationally effective but require a force sensor under the robot base. Several different architectures were considered for the tasks, and the best ones were identified among those tested. First, the data for training the networks were obtained in simulation. The trained networks showed reasonably good performance, especially using the LSTM architecture (with a root mean squared error (RMSE) of 0.1533 N for end-effector force estimation and 0.5115 Nm for joint torque estimation). Afterward, data were collected on a real Franka Emika Panda robot and then used to train the same networks for joint torque estimation. The obtained results are slightly worse than in simulation (0.5115 Nm vs. 0.6189 Nm, according to the RMSE metric) but still reasonably good, showing the validity of the proposed approach.

Ključne besede

robotski manipulator;ocena sile interakcije;globoko učenje;nevronske mreže;robotic manipulator;force estimation;deep learning;neural networks;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FE - Fakulteta za elektrotehniko
UDK: 007.52
COBISS: 87856643 Povezava se bo odprla v novem oknu
ISSN: 2079-9292
Št. ogledov: 77
Št. prenosov: 32
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: robotski manipulator;ocena sile interakcije;globoko učenje;nevronske mreže;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-18
Letnik: ǂno. ǂ23
Zvezek: 2963
Čas izdaje: Dec.-1 2021
DOI: 10.3390/electronics10232963
ID: 15327520