delo diplomskega seminarja
David Čadež (Avtor), Marko Kandić (Mentor)

Povzetek

Cilj tega diplomskega dela je predstaviti reprezentacijo Banachovih mrež s krepko enoto s prostori funkcij C(K) na kompaktnih topoloških prostorih K. V ta namen je vpeljan pojem Boolove algebre in dokazan Stoneov reprezentacijski izrek, ki služi kot močno orodje pri reprezentaciji Banachovih mrež. Nato je definiran Rieszov prostor, ki je vektorski prostor in hkrati mreža. Dokazanih je nekaj osnovnih lastnosti Rieszovih prostorov. Vpeljani so pojmi ideala, pasu, glavne projekcijske lastnosti, komponent pozitivnega vektorja in polnosti. Brez dokaza je naveden Freudenthalov spektralni izrek. Na koncu je dokazan glavni izrek, ki pravi, da je vsaka Banachova mreža s krepko enoto Rieszovo izomorfna nekemu prostoru funkcij C(K).

Ključne besede

matematika;Booleova algebra;delno urejeni vektorski prostori;Rieszovi prostori;Stoneov reprezentacijski izrek;ideali;Banachova mreža;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [D. Čadež]
UDK: 512
COBISS: 115567875 Povezava se bo odprla v novem oknu
Št. ogledov: 523
Št. prenosov: 65
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Stone representation theorem and vector lattices with a strong unit
Sekundarni povzetek: The aim of this thesis is to introduce the representation of Banach lattices with a strong unit by function spaces C(K) on compact topological spaces. To this end, the notion of Boolean algebra is introduced and Stone’s representation theorem is proven, which serves as a powerful tool in representation of Banach lattices. The Riesz space is defined, which is both a vector space and a lattice. After that, some basic properties of Riesz spaces are shown and the notions of the ideal, band, principal projection property, components of a positive vector and completeness are introduced. Freudenthal’s spectral theorem is stated without proof. In the end, the main theorem is proven, which states that every Banach lattice with a strong unit is Riesz isomorphic to some function space C(K).
Sekundarne ključne besede: mathematics;Boolean algebra;partially ordered vector spaces;Riesz spaces;Stone representation theorem;ideals;Banach lattice;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Strani: 36 str.
ID: 15899403
Priporočena dela:
, delo diplomskega seminarja
, magistrsko delo
, diplomsko delo