magistrsko delo
Saša Trstenjak (Avtor), Urban Jezernik (Mentor)

Povzetek

V delu s pomočjo Hassejevega načela obravnavamo obstoj racionalnih ničel homogenih kvadratnih polinomov z racionalnimi koeficienti. Preko inverzne limite definiramo $p$-adična števila ${\mathbb Q}_p$ in obravnavamo rešljivost enačb v množici ${\mathbb Q}_p$. Nato definiramo Legendrov simbol in Hilbertov simbol, obravnavamo kvadrate v p-adičnih številih ter dokažemo Hassejevo načelo za homogene kvadratne polinome največ treh spremenljivk. V nadaljevanju si podrobneje pogledamo splošne kvadratne forme in dokažemo Hassejevo načelo še za homogene kvadratne polinome štirih in več spremenljivk. Navedemo še nekaj primerov polinomskih enačb višjih stopenj, ki ne ustrezajo Hassejevemu načelu. Na koncu si na primeru kubičnih form treh spremenljivk pogledamo, kolikšen delež jih ustreza Hassejevemu načelu in kolikšen delež ga ovrže.

Ključne besede

matematika;p-adična števila;kvadratna forma;Hassejevo načelo;Hilbertov simbol;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [S. Trstenjak]
UDK: 511
COBISS: 119343619 Povezava se bo odprla v novem oknu
Št. ogledov: 852
Št. prenosov: 92
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: The Hasse principle
Sekundarni povzetek: In this thesis we explore the Hasse principle and use it to consider the existence of rational zeros of homogeneous quadratic polynomials with rational coefficients. We define $p$-adic numbers ${\mathbb Q}_p$ as an inverse limit and consider solvability of equations in the set ${\mathbb Q}_p$. We then define the Legendre symbol and the Hilbert symbol, consider p- adic squares, and prove the Hasse principle for homogeneous quadratic polynomials of up to three variables. Then we take a closer look at general quadratic forms and prove the Hasse principle for homogeneous quadratic polynomials of four or more variables. Next, we give a few examples of higher-degree polynomial equations that do not satisfy the Hasse principle. Finally, in the case of cubic forms of three variables, we look at what proportion of them satisfy the Hasse principle and what proportion do not.
Sekundarne ključne besede: mathematics;p-adic numbers;quadratic form;Hasse principle;Hilbert symbol;
Vrsta dela (COBISS): Magistrsko delo/naloga
Študijski program: 0
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Pedagoška matematika
Strani: IX, 78 str.
ID: 16306604
Priporočena dela: