master's thesis
Benjamin Džubur (Avtor), Matej Kristan (Mentor), Alan Lukežič (Komentor)

Povzetek

State-of-the-art long-term visual object tracking methods are limited to predicting target position as an axis-aligned bounding box. Segmentation-based trackers exist, however they do not address long-term disappearances of the target. Thus, by upgrading a short-term segmentation-based tracker with the capability of redetecting a lost target, we develop a new discriminative single shot segmentation tracker -- D3SLT, which is capable of long-term tracking in addition to recovering from short-term tracking failures.We upgrade the previously developed short-term D3S tracker with a global redetection module, based on an image-wide discriminative correlation filter response and Gaussian motion model. An online learned confidence estimation module robustly estimates target disappearance. An additional backtracking module enables recovery from tracking failures and further improves tracking performance. On the bounding box based VOT-LT2021 Challenge, D3SLT achieves F-score of 0.667, while on LaSOT it achieves success of 0.616 and normalized precision of 0.692. D3SLT achieves results close to those of state-of-the-art long-term trackers while additionally outputting segmentation masks.

Ključne besede

computer vision;visual tracking;video segmentation;long-term tracking;computer science;master's thesis;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [B. Džubur]
UDK: 004.93(043.2)
COBISS: 121232131 Povezava se bo odprla v novem oknu
Št. ogledov: 24
Št. prenosov: 9
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarni naslov: Robustni kratkoročni sledilnik s ponovno detekcijo
Sekundarni povzetek: Najsodobnejši dolgoročni sledilniki so omejeni na napovedovanje položaja tarče z očrtanim pravokotnikom, poravnanim z osmi. Sledilniki, ki temeljijo na segmentaciji obstajajo, a ne naslavljajo dolgoročnih izginotij tarče. Z nadgradnjo kratkoročnega segmentacijskega sledilnika s sposobnostjo ponovne detekcije izgubljene tarče zato razvijemo nov segmentacijski sledilnik D3SLT, ki je poleg okrevanja od kratkoročnih odpovedi sledenja zmožen tudi dolgoročnega sledenja. Predhodno razvit kratkoročni sledilnik D3S nadgradimo z modulom ponovne detekcije, ki deluje na podlagi odziva diskriminativnega korelacijskega filtra nad celotno sliko in Gaussovega gibalnega modela. Za namene robustne napovedi prisotnosti tarče uporabimo modul za oceno zaupanja, ki temelji na sprotnem učenju. Dodaten modul za vzvratno sledenje omogoča okrevanje od odpovedi sledenja in dodatno izboljša uspešnost sledilnika. Na evalvacijski zbirki VOT-LT2021, ki temelji na očrtanih okvirjih, doseže D3SLT F-vrednost 0,667, na zbirki LaSOT pa uspeh 0,616 in normalizirano natančnost 0,692. D3SLT tako dosega rezultate, ki so blizu rezultatom nekaterih najsodobnejših sledilnikov in hkrati generira natančne segmentacijske maske tarč.
Sekundarne ključne besede: vizualno sledenje;video segmentacija;dolgoročno sledenje;magisteriji;Računalniški vid;Računalništvo;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Magistrsko delo/naloga
Študijski program: 1000471
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: XII, 68 str.
ID: 16439147