diplomsko delo
Povzetek
V diplomskem delu definiramo pojem trikotne algebre. Dokažemo nekatere osnovne lastnosti in podamo osnovne primere trikotnih algeber, med katerimi sta najpomembnejši algebra zgornje trikotnih matrik Tn(R) in gnezdna algebra T(N). V nadaljevanju se ukvarjamo s komutirajočimi preslikavami trikotnih algeber. Preslikava f algebre A je komutirajoča, če velja f(a)a = af(a) za vsak a A. Zanima nas oblika komutirajoče linearne preslikave trikotne algebre. Glavni cilj tretjega poglavja je poiskati tak razred trikotnih algeber, katerih vse komutirajoče linearne preslikave imajo standardno obliko. Proučujemo tudi komutirajočo sled poljubne bilinearne preslikave B : U % U % U trikotne algebre U. Zanima nas oblika preslikave x % B(x, x), ki zadošča pogoju B(x, x)x%xB(x, x) = 0 za vsak x % U. Naš cilj je poiskati tak razred trikotnih algeber, katerih vse komutirajoče sledi bilinearnih preslikav imajo standardno obliko.
Ključne besede
matematika;algebra;trikotna algebra;matrike;gnezdna algebra;preslikave;mutirajoča preslikava;bilinearne preslikave;diplomska dela;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2011 |
Izvor: |
Maribor |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UM FNM - Fakulteta za naravoslovje in matematiko |
Založnik: |
[B. Trebežnik] |
UDK: |
51(043.2) |
COBISS: |
18504712
|
Št. ogledov: |
2583 |
Št. prenosov: |
129 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Commuting maps of triangular algebras |
Sekundarni povzetek: |
In the graduation thesis the notion of a triangular algebra is introduced. We derive some of their basic properties and present classical examples of triangular algebras, among which the upper triangular matrix algebra Tn(R) and nest algebra T(N) are the most important. We proceed to study commuting maps of triangular algebras. A map f of an algebra A is called a commuting map if f(a)a = af(a) for every a % A. We consider the form of a commuting map of a triangular algebra. The main purpose of the third chapter is to identify a class of triangular algebras for which every commuting linear map is proper. We also study a commuting trace of an arbitrary bilinear map B : U % U % U on a triangular algebra U. We consider the form of a map x % B(x, x), which satis%es the condition B(x, x)x % xB(x, x) = 0 for every x % U. Our main purpose is to identify a certain class of triangular algebras for which every commuting trace of a bilinear map is proper. |
Sekundarne ključne besede: |
Triangular algebra;upper triangular matrix algebra;nest algebra;commuting map;commuting trace of a bilinear map.; |
URN: |
URN:SI:UM: |
Vrsta dela (COBISS): |
Diplomsko delo |
Komentar na gradivo: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Strani: |
49 f. |
Ključne besede (UDK): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
19360 |