diplomsko delo
Rok Rajher (Avtor), Zoran Bosnić (Mentor), Petra Zaletel (Komentor)

Povzetek

Področje športnega plesa je izjemno tekmovalno, fizično zahtevno ter psihično naporno področje, zato prihaja do visokega števila poškodb plesalcev. Da bi ugotovili vzroke za poškodbe, so na Fakulteti za šport izvedli meritve za 259 plesalk in plesalcev različnih plesnih zvrsti (hiphop, rokenrol, standardni in latinsko-ameriški plesi ter breakdance). Meritve so vključevale merjenje telesne sestave, nekaterih gibalnih sposobnosti, preko vprašalnikov pa so preverili pojavnost poškodb, stopnjo obremenitve in osnovne demografske podatke o posameznem merjencu. Nekatere meritve so bile izvedene dvakrat (tri mesece po prvih meritvah). Ker so najpogostejše poškodbe plesalcev na področju gležnja, kolena, hrbtenice in ramena, smo z uporabo različnih algoritmov strojnega učenja (angl. "machine learning") zgradili napovedne modele za napoved poškodb omenjenih delov telesa. Na podlagi razlik med prvimi in drugimi meritvami smo zgradili modele za ocenjevanje napredka plesalcev. Za izbor najpomembnejših atributov smo uporabili algoritem ReliefF, modele pa smo tudi ustrezno interpretirali z uporabo knjižnice SHAP. Za modeliranje smo uporabili logistično regresijo, naivnega Bayesa, nevronsko mrežo, metodo podpornih vektorjev (SVM), naključne gozdove, gradient boosting (GB), eXtreme Gradient Boosting (XGB) ter metodo najbližjih sosedov (KNN). Za napoved poškodb kolena smo dosegli klasifikacijsko točnost 69 %, za napoved poškodb hrbtenice 78 %, gležnja 71 % in ramena 88 %. Z modeli za napoved napredka smo dosegli 98 % točnost, kar nam omogoča njihovo uporabo v praksi ter prepoznavanje ključnih vzrokov za napredek.

Ključne besede

klasifikacija;poškodbe;ples;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [R. Rajher]
UDK: 004.85:793.3(043.2)
COBISS: 162353923 Povezava se bo odprla v novem oknu
Št. ogledov: 44
Št. prenosov: 8
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Analysis of Injuries in Sports Dancers using Machine Learning Methods
Sekundarni povzetek: The field of sports dance is highly competitive, physically demanding, and mentally challenging, leading to a high number of injuries among dancers. In order to identify the causes of these injuries, measurements were conducted on 259 dancers of various dance styles (hip-hop, rock and roll, standard and Latin American dances, and breakdance) at the Faculty of Sport. The measurements included body composition, certain motor abilities, and questionnaires to assess the occurrence of injuries, load, and basic demographic data of each participant. Some measurements were repeated twice (three months after the initial measurements). As the most common injuries in dancers are related to the ankle, knee, spine, and shoulder, predictive models for forecasting injuries in these body parts were built using various machine learning algorithms. Based on the differences between the first and second measurements, models were constructed to evaluate dancers' progress. The ReliefF algorithm was used to select the most important attributes, and the models were appropriately interpreted using the SHAP library. Logistic regression, Naive Bayes, neural networks, Support Vector Machines (SVM), Random Forests, Gradient Boosting (GB), eXtreme Gradient Boosting (XGB), and K-Nearest Neighbors (KNN) were used for modeling. For predicting knee injuries, a classification accuracy of 69 % was achieved, for spine injuries 78 %, ankle injuries 71 %, and shoulder injuries 88 %. Models for progress prediction achieved an accuracy of 98 %, enabling their practical application and identification of key factors contributing to progress.
Sekundarne ključne besede: machine learning;classification;injuries;dance;computer science;diploma;Strojno učenje;Športne poškodbe;Športni ples;Računalništvo;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 52 str.
ID: 19833926