Gašper Petelin (Avtor), Rok Hribar (Avtor), Gregor Papa (Avtor)

Povzetek

Efficient traffic management is essential in modern urban areas. The development of intelligent traffic flow prediction systems can help to reduce travel times and maximize road capacity utilization. However, accurately modeling complex spatiotemporal dependencies can be a difficult task, especially when real-time data collection is not possible. This study aims to tackle this challenge by proposing a solution that incorporates extensive feature engineering to combine historical traffic patterns with covariates such as weather data and public holidays. The proposed approach is assessed using a new real-world data set of traffic patterns collected in Ljubljana, Slovenia. The constructed models are evaluated for their accuracy and hyperparameter sensitivity, providing insights into their performance. By providing practical solutions for real-world scenarios, the proposed approach offers an effective means to improve traffic flow prediction without relying on real-time data.

Ključne besede

modeliranje prometa;napovedovanje časovnih vrst;modeliranje količine prometa;strojno učenje;primerjava modelov;traffic modeling;time-series forecasting;traffic-count data set;machine learning;model comparison;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: IJS - Institut Jožef Stefan
Založnik: Springer Nature
UDK: 656
COBISS: 163745027 Povezava se bo odprla v novem oknu
ISSN: 1866-8887
Št. ogledov: 6
Št. prenosov: 0
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: Promet;
Komentar vira: Nasl. z nasl. zaslona; Opis vira z dne 8. 9. 2023;
Strani: str. 1-20
Zvezek: ǂVol. ǂ15, article no. 30
Čas izdaje: 2023
DOI: 10.1186/s12544-023-00600-6
ID: 20005343