Povzetek
Hydrological modelling can be complex in nonhomogeneous catchments with diverse geological, climatic, and topographic conditions. In this study, an integrated conceptual model including the snow module with machine learning modelling approaches was implemented for daily rainfall-runoff modelling in mostly karst Ljubljanica catchment, Slovenia, which has heterogeneous characteristics and is potentially exposed to extreme events that make the modelling process more challenging and crucial. In this regard, the conceptual model CemaNeige Génie Rural à 6 paramètres Journalier (CemaNeige GR6J) was combined with machine learning models, namely wavelet-based support vector regression (WSVR) and wavelet-based multivariate adaptive regression spline (WMARS) to enhance modelling performance. In this study, the performance of the models was comprehensively investigated, considering their ability to forecast daily extreme runoff. Although CemaNeige GR6J yielded a v ery good performance, it overestimated low flows. The WSVR and WMARS models yielded poorer performance than the conceptual and hybrid models. The hybrid model approach improved the performance of the machine learning models and the conceptual model by revealing the linkage between variables and runoff in the conceptual model, which provided more accurate results for extreme flows. Accordingly, the hybrid models improved the forecasting performance of the maximum flows up to 40 % and 61 %, and minimum flows up to 73 % and 72 % compared to the CemaNeige GR6J and stand-alone machine learning models. In this regard, the hybrid model approach can enhance the daily rainfall-runoff modelling performance in nonhomogeneous and karst catchments where the hydrological process can be more complicated.
Ključne besede
konceptualni model;hibridno modeliranje;strojno učenje;kraško porečje;reka Ljubljanica;conceptual model;hybrid modelling;machine learning;Karst catchment;Ljubljanica River;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2024 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FGG - Fakulteta za gradbeništvo in geodezijo |
UDK: |
556.165 |
COBISS: |
190216195
|
ISSN: |
0048-9697 |
Št. ogledov: |
145 |
Št. prenosov: |
30 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarni naslov: |
Izboljšanje simulacij hidrološkega modela kraškega porečja z integracijo konceptualnega modela z modeli strojnega učenja |
Sekundarne ključne besede: |
konceptualni model;hibridno modeliranje;strojno učenje;kraško porečje;reka Ljubljanica; |
Vrsta dela (COBISS): |
Članek v reviji |
Strani: |
str. 1-24 |
Letnik: |
ǂVol. ǂ926 |
Zvezek: |
ǂno. ǂmaj, ǂart. ǂ171684 |
Čas izdaje: |
2024 |
DOI: |
10.1016/j.scitotenv.2024.171684 |
ID: |
23451514 |