Darian Tomašević (Avtor), Fadi Boutros (Avtor), Naser Damer (Avtor), Peter Peer (Avtor), Vitomir Štruc (Avtor)

Povzetek

The performance of state-of-the-art face recognition systems depends crucially on the availability of large-scale training datasets. However, increasing privacy concerns nowadays accompany the collection and distribution of biometric data, which has already resulted in the retraction of valuable face recognition datasets. The use of synthetic data represents a potential solution, however, the generation of privacy-preserving facial images useful for training recognition models is still an open problem. Generative methods also remain bound to the visible spectrum, despite the benefits that multispectral data can provide. To address these issues, we present a novel identity-conditioned generative framework capable of producing large-scale recognition datasets of visible and near-infrared privacy-preserving face images. The framework relies on a novel identity-conditioned dual-branch style-based generative adversarial network to enable the synthesis of aligned high-quality samples of identities determined by features of a pretrained recognition model. In addition, the framework incorporates a novel filter to prevent samples of privacy-breaching identities from reaching the generated datasets and improve both identity separability and intra-identity diversity. Extensive experiments on six publicly available datasets reveal that our framework achieves competitive synthesis capabilities while preserving the privacy of real-world subjects. The synthesized datasets also facilitate training more powerful recognition models than datasets generated by competing methods or even small-scale real-world datasets. Employing both visible and near-infrared data for training also results in higher recognition accuracy on real-world visible spectrum benchmarks. Therefore, training with multispectral data could potentially improve existing recognition systems that utilize only the visible spectrum, without the need for additional sensors.

Ključne besede

sinteza slik;biometrija na podlagi obraza;zasebni podatki;večspektralno razpoznavanje;generativne nasprotniške mreže;image synthesis;face-based biometrics;privacy-preserving data;multispectral recognition;generative adversarial networks;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FE - Fakulteta za elektrotehniko
UDK: 004.93:57.087.1
COBISS: 194774275 Povezava se bo odprla v novem oknu
ISSN: 0952-1976
Št. ogledov: 85
Št. prenosov: 65
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: sinteza slik;biometrija na podlagi obraza;zasebni podatki;večspektralno razpoznavanje;generativne nasprotniške mreže;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-25
Letnik: ǂpart ǂE
Zvezek: [article no.] 108495
Čas izdaje: Jul. 2024
DOI: 10.1016/j.engappai.2024.108495
ID: 23668369