10 years of research trends from the European Resuscitation congresses

Povzetek

Aims: The aim of this study is to use generative artificial intelligence to perform bibliometric analysis on abstracts published at European Resuscitation Council (ERC) annual scientific congress and define trends in ERC guidelines topics over the last decade. Methods: In this bibliometric analysis, the WebHarvy software (SysNucleus, India) was used to download data from the Resuscitation journal’s website through the technique of web scraping. Next, the Chat Generative Pre-trained Transformer 4 (ChatGPT-4) application programming interface (Open AI, USA) was used to implement the multinomial classification of abstract titles following the ERC 2021 guidelines topics. Results: From 2012 to 2022 a total of 2491 abstracts have been published at ERC congresses. Published abstracts ranged from 88 (in 2020) to 368 (in 2015). On average, the most common ERC guidelines topics were Adult basic life support (50.1%), followed by Adult advanced life support (41.5%), while Newborn resuscitation and support of transition of infants at birth (2.1%) was the least common topic. The findings also highlight that the Basic Life Support and Adult Advanced Life Support ERC guidelines topics have the strongest co-occurrence to all ERC guidelines topics, where the Newborn resuscitation and support of transition of infants at birth (2.1%; 52/2491) ERC guidelines topic has the weakest co-occurrence. Conclusion: This study demonstrates the capabilities of generative artificial intelligence in the bibliometric analysis of abstract titles using the example of resuscitation medicine research over the last decade at ERC conferences using large language models.

Ključne besede

generative artificial intelligence;bibliometric analysis;congress;emergency medicine;European Resuscitation Council;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.03 - Kratki znanstveni prispevek
Organizacija: UM FZV - Fakulteta za zdravstvene vede
Založnik: ELSEVIER
UDK: 004.8:616-083.98
COBISS: 187063811 Povezava se bo odprla v novem oknu
ISSN: 2666-5204
Št. ogledov: 0
Št. prenosov: 1
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: generativna umetna inteligenca;bibliometrična analiza;kongres;urgentna medicina;Evropski svet za reanimacijo;
Vrsta dela (COBISS): Znanstveno delo
Strani: str. 1-5
Zvezek: ǂVol. ǂ18, [article no.] 100584
Čas izdaje: 2024
DOI: 10.1016/j.resplu.2024.100584
ID: 25420109
Priporočena dela:
, 10 years of research trends from the European Resuscitation congresses
, text-conditioned fashion-image editing with guided GAN inversion
, case study in maintenance cost estimation