Hashem Bordbar (Avtor)

Povzetek

In this article, we initiate an exploration of the algebraic structures within coding theory. Specifically, we focus on the potential for an ordered al- gebraic structure, known as a BCI-algebra, within an arbitrary linear code C. We demonstrate that any binary linear code C of length n, where n is a positive integer, can be equipped with a BCI-algebra structure between its codewords. This structure is called BCI-algebra over the code C and denoted by (BCI)C -algebra. To establish this structure, we define an operation ∗C be- tween the codewords and investigate its properties. Additionally, we introduce the concept of subcodes within a code and examine the relationship between these subcodes and the ideals of a BCI-algebra over code C. Furthermore, we define a binary relation among codewords and prove that code C, under this relation—referred to as the (BCI)C -order—forms a partially ordered set. Lastly, we show that the generator matrix of a binary linear code C contains the minimal codewords of C with respect to the (BCI)C -order.

Ključne besede

BCI-algebra;binary linear block codes;subcodes;partially ordered set;lexicographic order;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UNG - Univerza v Novi Gorici
UDK: 51
COBISS: 217895683 Povezava se bo odprla v novem oknu
ISSN: 1930-5346
Št. ogledov: 842
Št. prenosov: 3
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Strani: str. 1248-1259
Letnik: ǂVol. ǂ19
Zvezek: ǂissue ǂ4
Čas izdaje: 2025
DOI: 10.3934/amc.2024052
ID: 25459660