diplomsko delo
Povzetek
V diplomskem delu se ukvarjamo z računanjem ploščin ravninskih območij, ki jih določa Jordanov lok in popišejo tangentni odseki enake ali spremenljive dolžine. Najpreprostejši in motivacijski primer je prevedba kolobarja na ploščinsko enak krog. Posplošitev te ideje je Mamikonov izrek, ki ga formuliramo in dokažemo. Nato izrek uporabimo za ploščine likov, ki jih določajo graf potenčne oziroma eksponentne funkcije. Za konec določimo še ploščino pod enim lokom cikloide.
Ključne besede
diplomska dela;Mamikonov izrek;tangentni šop;tangentni trak;ploščina;tangenta;podtagenta;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2016 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UM FNM - Fakulteta za naravoslovje in matematiko |
Založnik: |
[N. Gril] |
UDK: |
514.122(043.2) |
COBISS: |
22191112
|
Št. ogledov: |
871 |
Št. prenosov: |
98 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Mamikon's theorem for planar regions |
Sekundarni povzetek: |
In the thesis we consider calculating the areas of planar regions, defined by a Jordan curve and sections of tangents of constant or variable length. The simplest and motivating case is the transition of ring into a circle of equal area. Generalization of this idea is Mamikon's Theorem, which is being formulated and proved. Then we apply the Theorem for calculating the areas, defined by graphs of power and exponential function, respectively. At the end, we determine the area under one arc of cycloid. |
Sekundarne ključne besede: |
Mamikon's theorem;tangent cluster;tangent sweep;the area;tangent;subtangent; |
URN: |
URN:SI:UM: |
Vrsta dela (COBISS): |
Diplomsko delo |
Komentar na gradivo: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Strani: |
55 f. |
ID: |
9127803 |