Povzetek
Dokažemo, da je za ▫$n \ge 5$▫ vsak element alternirajoče grupe ▫$A_n$▫ komutator dveh ciklov ▫$A_n$▫. Dokažemo tudi, da je za ▫$n \ge 2$▫ vsak ▫$(2n + 1)$▫-cikel permutacijske grupe ▫$S_{2n + 1}$▫ komutator ▫$p$▫-cikla in ▫$q$▫-cikla ▫$S_{2n + 1}$▫, če in samo če so izpolnjeni naslednji trije pogoji: (i)▫ $n + 1 \le p, q$▫, (ii) ▫$2n + 1 \ge p, q$▫, (iii) ▫$p + q \ge 3n + 1$▫.
Ključne besede
komutator;cikel;permutacija;alternirajoča grupa;commutator;cycle;permutation;alternating group;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2016 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
UDK: |
512.542 |
COBISS: |
17731929
|
ISSN: |
1855-3966 |
Matična publikacija: |
Ars mathematica contemporanea
|
Št. ogledov: |
979 |
Št. prenosov: |
0 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarni naslov: |
Komutatorji ciklov v permutacijskih grupah |
Sekundarni povzetek: |
We prove that for ▫$n \ge 5$▫, every element of the alternating group ▫$A_n$▫ is a commutator of two cycles of ▫$A_n$▫. Moreover we prove that for ▫$n \ge 2$▫, a ▫$(2n + 1)$▫-cycle of the permutation group ▫$S_{2n + 1}$▫ is a commutator of a ▫$p$▫-cycle and a ▫$q$▫-cycle of ▫$S_{2n + 1}$▫ if and only if the following three conditions are satisfied: (i) ▫$n + 1 \le p, q$▫, (ii) ▫$2n + 1 \ge p, q$▫, (iii) ▫$p + q \ge 3n + 1$▫. |
Sekundarne ključne besede: |
komutator;cikel;permutacija;alternirajoča grupa; |
Strani: |
str. 67-77 |
Letnik: |
ǂVol. ǂ10 |
Zvezek: |
ǂno. ǂ1 |
Čas izdaje: |
2016 |
ID: |
9233736 |