delo diplomskega seminarja
Vid Drobnič (Avtor), Gregor Cigler (Mentor)

Povzetek

Delo opisuje nekatere osnovne rezultate kombinatorične teorije matrik. Kombinatorična teorija matrik je veja matematike, ki združuje kombinatoriko, teorijo grafov in linearno algebro. V prvem delu diplomske naloge si podrobneje ogledamo algebraične lastnosti (0, 1)-matrik. Klasičen problem tlakovanja pravokotnikov zapišemo z matrično enačbo in s pomočjo lastnosti (0, 1)-matrik rešimo zanimiv kombinatorični primer. V drugem delu diplomske naloge graf predstavimo z matriko sosednosti ter incidenčno matriko. Izpeljemo povezavo med tema dvema matrikama in definiramo Laplaceovo matriko grafa. Povežemo nekatere lastnosti grafa z algebraičnimi lastnostmi matrike sosednosti ter incidenčne matrike. Na koncu se podrobneje posvetimo Laplaceovi matriki grafa in izpeljemo formulo za izračun števila vpetih dreves v grafu.

Ključne besede

(0, 1)-matrika;matrika sosednosti;spekter grafa;incidenčna matrika;Laplaceova matrika;kompleksnost grafa;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [V. Drobnič]
UDK: 519.1:512.64
COBISS: 58842371 Povezava se bo odprla v novem oknu
Št. ogledov: 1720
Št. prenosov: 127
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Combinatorial matrix thoery
Sekundarni povzetek: This thesis describes some of the basic results of combinatorial matrix theory. Combinatorial matrix theory is a branch of mathematics that connects combinatorics, graph theory and linear algebra. The first part of the thesis deals with algebraic properties of (0, 1)-matrices. We reformulate an elementary problem in geometry in terms of matrices and solve an interesting combinatorial problem with the help of the properties of (0, 1)-matrices. In the second part of the thesis we represent a graph with its adjacency matrix and its incidence matrix. We derive a relation between the two matrices and define a Laplacian matrix of a graph. We connect properties of a graph with algebraic properties of its adjacency and incidence matrix. At the and we discuss Laplacian matrix of a graph and derive a formula for calculating the number of spanning trees in a graph.
Sekundarne ključne besede: (0, 1)-matrix;adjacency matrix;graph spectrum;incidence matrix;Laplacian matrix;graph complexity;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Strani: 28 str.
ID: 12039032
Priporočena dela: