Kendallov tau in Spearmanov ro

Povzetek

V delu diplomskega seminarja predstavimo najpomembnejši meri skladnosti, Kendallov tau in Spearmanov ro. To sta meri, ki opisujeta odvisnost slučajnih spremenljivk, imenovano skladnost. Sprva bomo definirali meri v primeru slučajnega vzorca, bolj podrobno pa si bomo pogledali skladnost zveznih slučajnih spremenljivk. Za natančnejšo obravnavo Kendallovega tau in Spearmanovega ro potrebujemo funkcijo, imenovano kopula, ki povezuje skupne porazdelitvene funkcije slučajnih vektorjev z njihovimi robnimi porazdelitvami. Teorija kopul je nepogrešljiva pri obravnavi mer skladnosti, zato bomo predstavili najpomembnejše kopule ter jih grafično prikazali. S Sklarovim izrekom bomo postavili temelje za razumevanje in obravnavo skladnostnih mer. Delo bomo zaključili s primerjavo mer Kendallovega tau in Spearmanovega ro ter s prikazom nekaterih najpomembnejših neenakosti med njima.

Ključne besede

finančna matematika;skladnost;kopule;Sklarov izrek;Kendallov tau;Spearmanov ro;skladnostna funkcija;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL EF - Ekonomska fakulteta
Založnik: [M. Špehonja]
UDK: 519.2
COBISS: 58699779 Povezava se bo odprla v novem oknu
Št. ogledov: 903
Št. prenosov: 102
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Measures of concordance: Kendall's tau and Spearman's rho
Sekundarni povzetek: In this work, we present the most important measures of concordance, Kendall's tau and Spearman's rho. These measures describe a special dependence of random variables called concordance. First we define both measures in the case of a random sample but we will mostly focus on concordance of continuous random variables. For a more precise study of both measures Kendall's tau and Spearman's rho, we introduce function called copula, which links multivariate joint distribution functions of random vectors with their univariate marginal distributions. It has an indispensable role in a study of measures of concordance. We will prove Sklar's theorem, which will serve as a foundation for understanding measures of concordance. Finally, we will take a look into the relationship between Kendall's tau and Spearman's rho and show the most important inequalities relating both measures.
Sekundarne ključne besede: concordance;copula;Sklar theorem;Kendall tau;Spearman rho;concordance function;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja
Strani: 25 str.
ID: 12039034
Priporočena dela:
, Kendallov tau in Spearmanov ro
, delo diplomskega seminarja
, delo diplomskega seminarja
, magistrsko delo
, delo diplomskega seminarja