doctoral dissertation
Povzetek
In this thesis, we investigate problems in complex approximation theory motivated by recent developments in Oka theory, minimal surface theory, and contact geometry. Primarily, our focus lies in proving approximation results in the spirit of Carleman’s theorem, that is, better than uniform approximation on noncompact sets. The original research of this dissertation begins in Chapter 3, where we prove a generalisation of Carleman’s theorem for maps from Stein manifolds to Oka manifolds. Then, in Chapter 4, we prove a version of Carleman’s theorem for directed holomorphic immersions and minimal surfaces. Under suitable hypotheses, we may even ensure that the approximating maps have desirable global properties, including completeness and properness. As an application of these results, we give an approximate solution to a Plateau problem for divergent Jordan curves in Euclidean spaces. Finally, Chapter 5 is concerned with approximation by solutions of systems of differential equations. We adapt the tools and techniques that have successfully been applied in the single equation, contact case. Period dominating sprays play an instrumental role.
Ključne besede
Stein manifolds;Oka manifolds;holomorphic maps;Carleman approximation;bounded exhaustion hulls;minimal surfaces;directed holomorphic curves;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2020 |
Tipologija: |
2.08 - Doktorska disertacija |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[B. Chenoweth] |
UDK: |
514.752:517.55(043.3) |
COBISS: |
32648963
|
Št. ogledov: |
1365 |
Št. prenosov: |
127 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarni naslov: |
Teme v kompleksni aproksimacijski teoriji |
Sekundarni povzetek: |
V disertaciji obravnavamo probleme v kompleksni aproksimacijski teoriji, ki so motivirani s teorijo Oka, teorijo minimalnih ploskev in holomorfno kontaktno geometrijo. Delo je osredotočeno na aproksimacijske rezultate Carlemanovega tipa, to je aproksimacijo v fini topologiji na nekompaktnih zaprtih množicah. Originalni rezultati disertacije se pričnejo v poglavju 3 z dokazom posplošitve Carlemanovega izreka za preslikave Steinovih mnogoterosti v mnogoterosti Oka. V poglavju 4 je dokazana verzija Carlemanovega izreka za usmerjene holomorfne imerzije in konformne minimalne imerzije. Ob ustreznih predpostavkah lahko zagotovimo dodatne lastnosti aproksimantov kot so kompletnost in pravost. Kot primer uporabe dobljenih rezultatov dokažemo obstoj približnih rešitev Plateaujevega problema za divergentne Jordanove krivulje v Evklidskih prostorih. V poglavju 5 obravnavamo aproksimacijo rešitev sistemov holomorfnih diferencialnih enačb z uporabo metod, nedavno razvitih za aproksimacijo Legendrovih krivulj v kompleksnih kontaktnih mnogoterostih. |
Sekundarne ključne besede: |
Steinove mnogoterosti;Oka mnogoterosti;holomorfne preslikave;Carlemanova aproksimacija;omejena ogrinjača;minimalne ploskve;usmerjene holomorfne krivulje; |
Vrsta dela (COBISS): |
Doktorsko delo/naloga |
Študijski program: |
0 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. Ljubljana, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 3. stopnja |
Strani: |
VIII, 120 str. |
ID: |
12074666 |