Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2021 |
Tipologija: | 2.09 - Magistrsko delo |
Organizacija: | UL FRI - Fakulteta za računalništvo in informatiko |
Založnik: | [T. Lučovnik] |
UDK: | 519.1 |
COBISS: | 66285571 |
Št. ogledov: | 848 |
Št. prenosov: | 62 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Nordhaus-Gaddum type inequalities for Laplacian eigenvalues |
Sekundarni povzetek: | For a simple graph $G$ of order $n$, we define its adjacency matrix and Laplacian matrix. Both have real eigenvalues. Let $\theta_1(G) \geq \cdots \geq \theta_n(G)$ be the eigenvalues of the adjacency matrix and $\lambda_1(G) \geq \cdots \geq \lambda_n(G) = 0$ the eigenvalues of the Laplacian matrix of graph $G$. We study Nordhaus-Gaddum type inequalities for the eigenvalues of these two matrices. These are upper and lower bounds for sums of the forms $\theta_i(G) + \theta_i(\overline{G})$ and $\lambda_j(G) + \lambda_j(\overline{G})$, where $\overline{G}$ denotes the graph complement of $G$. The focus of this work is on the sums for the smallest eigenvalue of the adjacency matrix and the largest two eigenvalues of the Laplacian matrix. |
Sekundarne ključne besede: | mathematics;Nordhaus-Gaddum type inequalities;adjacency matrix;Laplacian matrix;eigenvalues;algebraic connectivity; |
Vrsta dela (COBISS): | Magistrsko delo/naloga |
Študijski program: | 0 |
Konec prepovedi (OpenAIRE): | 1970-01-01 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja |
Strani: | IX, 70 str. |
ID: | 13011137 |