delo diplomskega seminarja
Povzetek
Eliptične funkcije so meromorfne dvojno periodične funkcije v kompleksni ravnini. Za nekonstantne eliptične funkcije velja, da imajo število polov enako številu ničel, medtem ko je eliptična funkcija brez polov konstantna. Uporabljajo se za ocenjevanje integralov in reševanje nekaterih diferencialnih enačb. Poznamo dve standardni obliki in sicer Weierstrassove in Jacobijeve funkcije. Vse eliptične funkcije se lahko izrazijo s tema tipoma. Bolj v uporabi so Weierstrassove funkcije. Označujemo jih z ℘. Funkcije ℘ so periodične. Eliptično funkcijo pa lahko izrazimo kot racionalno funkcijo ℘ in ℘'. S pomočjo Weierstrassovega produkta lahko zapišemo Weierstrassovo sigma funkcijo, označimo jo s σ. Ta funkcija je liha in homogena. Neskončni produkt, s katerim se izraža, konvergira absolutno ter enakomerno na vsaki kompaktni množici. S kvocientom σ'/σ je definirana Weierstrassova zeta funkcija. Ta funkcija je homogena stopnje -1 in liha. Neskončni produkt, s katerim se izraža, prav tako konvergira absolutno in enakomerno na vsaki kompaktni množici, ki ne vsebuje polov. S pomočjo teh funkcij lahko zapišemo vsako eliptično funkcijo.
Ključne besede
matematika;eliptične funkcije;Weierstrassova eliptična funkcija;meromorfne funkcije;Weierstrassov neskončni produkt;Weierstrassova zeta funkcija;Weierstrassova sigma funkcija;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2021 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[L. Vidmar] |
UDK: |
517.5 |
COBISS: |
73986819
|
Št. ogledov: |
1285 |
Št. prenosov: |
99 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Elliptic function |
Sekundarni povzetek: |
Elliptic functions are meromorphic double-periodic functions in a complex plane. The number of poles is equal to the number of zeros, if the elliptic function is non-constant. While the elliptic function without poles is constant. They are used to estimate integrals and solve some differential equations. We know two standard forms, named Weierstrass and Jacobi functions. All elliptical functions are expressed by these two forms. More in use are Weierstrass functions labeled ℘. The ℘ function is periodic. Every elliptic function can be expressed as a rational function of ℘ and ℘'. Using the Weierstrass product, we can write the Weierstrass sigma function. We denote it by σ. These functions are homogeneous and odd. The infinite product with which they are expressed converge absolutely and uniformly on a compact set not containing zeros. The Weierstrass zeta function is the quotient σ'/σ. This function is homogeneous of degree $ -1 $ and odd. The infinite product with which it is expressed also converge absolutely and uniformly on every compact set not containing the poles. With the help of these two functions, we can write every elliptical function. |
Sekundarne ključne besede: |
mathematics;elliptic functions;Weierstrass function;meromorphic functions;Weierstrass infinite product;Weierstrass Zeta functions;Weierstrass Sigma functions; |
Vrsta dela (COBISS): |
Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: |
0 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Strani: |
29 str. |
ID: |
13268064 |