Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2021 |
Tipologija: | 2.11 - Diplomsko delo |
Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
Založnik: | [L. Jagodnik] |
UDK: | 519.6 |
COBISS: | 75593475 |
Št. ogledov: | 1032 |
Št. prenosov: | 75 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Least squares approximation of scattered data over triangulations |
Sekundarni povzetek: | In this paper we consider the problem of least squares approximation of scattered data over triangulations. We define finite dimensional space $S_1^0(\triangle)$ of continuous piecewise linear functions over a triangulation $\triangle$ and equip it with a basis. The basis consists of functions with local supports and pyramid-shaped graphs. Data are approximated by a function $f \in S_1^0(\triangle)$, which is represented as a linear combination of basis functions. The coefficients of the function are determined using the least squares method. We derive that coefficients of a function $f$ can be computed with solving an overdetermined system. The overdetermined system can be solved using the corresponding normal system determined by a symmetric sparse matrix. Its analysis ensures the existence and uniqueness of the approximation function. |
Sekundarne ključne besede: | mathematics;triangulations;least squares method;overdetermined systems; |
Vrsta dela (COBISS): | Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: | 0 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Strani: | 29 str. |
ID: | 13335674 |