delo diplomskega seminarja
Povzetek
Element $u$ iz kolobarja je izjemna enota, če sta $u$ in $1-u$ enoti, torej če sta $u$ in $1-u$ obrnljiva. V delu se najprej posvetimo kolobarjem ostankov ${\mathbb Z}_n$, nato pa sledi posplošitev na poljubne končne komutativne kolobarje z enico. V obeh primerih najprej dokažemo formulo za izračun števila izjemnih enot, nato pa še formulo za izračun predstavitev poljubnega elementa iz kolobarja kot vsoto $k$ izjemnih enot.
Ključne besede
matematika;izjemne enote;kolobar ostankov;končni kolobarji;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2021 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[A. Lemut] |
UDK: |
512 |
COBISS: |
76460291
|
Št. ogledov: |
591 |
Št. prenosov: |
52 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Sums of exceptional units |
Sekundarni povzetek: |
Element $u$ from some ring is an exceptional unit if both $u$ and $1-u$ are units, so if both $u$ and $1-u$ are invertible. In this work we first focus on the residue class rings modulo $n$, and then generalize it to all finite commutative rings with identity. In both cases, we first prove the formula for calculating the number of exceptional units, and then the formula for calculating the representations of any element in the ring as the sum of $k$ exceptional units. |
Sekundarne ključne besede: |
mathematics;exceptional units;residue class ring;finite rings; |
Vrsta dela (COBISS): |
Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: |
0 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Strani: |
31 str. |
ID: |
13411328 |