delo diplomskega seminarja
Povzetek
Najprej se seznanimo z osnovnimi pojmi, kot so kolobar in modul. Pripravimo nekaj izrekov, s katerimi bomo dokazali osnovni izrek - med njimi je kitajski izrek o ostankih za kolobarje. Nato dokažemo dve obliki osnovnega izreka o končno generiranih modulih nad glavnimi kolobarji. Na koncu osnovni izrek za module uporabimo za dokaz osnovnega izreka o končno generiranih Abelovih grupah in dokaz obstoja
Jordanove kanonične forme matrike.
Ključne besede
matematika;moduli;glavni kolobarji;osnovni izreki;Jordanova kanonična forma;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2021 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[N. Erzetič] |
UDK: |
512 |
COBISS: |
79890435
|
Št. ogledov: |
728 |
Št. prenosov: |
49 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Modules over PIDs and their applications |
Sekundarni povzetek: |
First, we present the basic definition, such as that of a ring and a module. We construct a number of theorems needed in proof of the fundamental theorem, including the Chineese remained theorem for rings. Next, we prove two forms of the fundamental theorem of finitely generated modules over PID. Lastly, we employ the module fundamental theorem to prove the fundamental theorem of finitely generated Abelian groups and the existance of the Jordan normal matrix form. |
Sekundarne ključne besede: |
mathematics;module;PID;principal ideal domain;fundamental theorems;Jordan normal form; |
Vrsta dela (COBISS): |
Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: |
0 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Strani: |
27 str. |
ID: |
13668080 |