delo diplomskega seminarja
Matej Rojec (Avtor), Ljupčo Todorovski (Mentor), Aleksandra Rashkovska (Komentor), Boris Zupanc (Komentor)

Povzetek

Oskrba Slovenije z električno energijo je tesno povezana z vzdrževanjem vseh obstoječih prenosnih objektov. V delu analiziramo objekt RTP Divača, čigar zelo pomembna gradnika sta prečna transformatorja s stikaloma, ki kontrolirata regulacijo napetosti in moči. Pregledi teh dveh transformatorjev se izvajajo glede na čas ali pa glede na stanje naprave. Pregledi so povezani s številom opravljenih preklopov stikal. Cilj diplomskega dela je boljše načrtovanje pregledov in vzdrževanje naprav, za kar uporabimo strojno učenje za gradnjo modelov, ki napovedujejo število dnevnih, tedenskih ter meseščnih preklopov. Modeli so se učili na podlagi podatkov izmerjenih v časovnem obdobju od leta 2017 do leta 2019, njihove napake pa so bile vrednotene na podatkih pridobljenih v časovnem obdobju od leta 2020 do leta 2021. Rezultati vrednotenja kažejo, da je za dnevno napovedovanje števila preklopov najuspešnejši model LSTM, za tedensko in mesečno napovedovanje števila preklopov pa je najuspešnejši model linearne regresije.

Ključne besede

električni transformatorji;strojno učenje;linearna regresija;odločitvena drevesa;naključni gozd;rangiranje napovednih spremenljivk;modeliranje;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [M. Rojec]
UDK: 004
COBISS: 120340995 Povezava se bo odprla v novem oknu
Št. ogledov: 701
Št. prenosov: 121
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Predictive maintenance of electric transformers with machine learning
Sekundarni povzetek: The supply of electricity to Slovenia is closely connected with the maintenance of all existing portable facilities in Slovenia. In this B.A. thesis, we analyse the RTP Divača facility, whose very important building blocks are two phase-shifting transformer with taps, which control voltage and power regulation. The checks of these two transformers are carried out in regard to time or the state of the transformer. In the thesis, the number of switches per day, per week and per month is modelled with the help of machine learning. The models were trained based on the data measured in the time period from 2017 to 2019, and their errors were evaluated on the basis of the data measured in the period from 2020 to 2021. The results of the test data show that for daily forecasting the number of switches LSTM is the most successful model, while for weekly and monthly forecasting the number of switches a linear regression model is best.
Sekundarne ključne besede: electric transformers;machine learning;linear regression;decision trees;random forest;feature selection;modeling;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja
Strani: 35 str.
ID: 16363424
Priporočena dela: