delo diplomskega seminarja
Povzetek
Naj bosta $g, h$ naključno izbrana elementa permutacijske grupe $S_n$. Ob predpostavki, da $g, h$ generirata $S_n$, pokažemo, da velja ${\rm diam}({\rm Cay}(S_n, \{g, h, g^{-1}, h^{-1}\})) \leq O(n^2(\log n)^c)$ z verjetnostjo $1- o(1)$ za neko konstanto $c$. Pri tem dokaz naslonimo na dejstvo, da imajo Schreierjevi grafi množice $r$-teric različnih števil iz $\{1, 2,\ldots, n\}$ glede na množico $d$ naključnih permutacij iz $S_n$ skoraj gotovo dobre ekspanzivne lastnosti, kar tudi dokažemo.
Ključne besede
matematika;ekspanzivni grafi;permutacijske grupe;Cayleyjev graf;premer;naključni sprehodi;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2022 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[T. Milanez] |
UDK: |
512 |
COBISS: |
121240835
|
Št. ogledov: |
1087 |
Št. prenosov: |
73 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Walks with random permutations |
Sekundarni povzetek: |
Let $g, h$ be a random pair of elements of the permutation group $S_n$. Under the assumption that $g, h$ generate $S_n$, we show that ${\rm diam}({\rm Cay}(S_n, \{g, h, g^{-1}, h^{-1}\})) \leq O(n^2(\log n)^c)$ with probabilty $1-o(1)$ for some constant $c$. We base our proof on the fact that Schreier graphs on the set of $r$-tuples of distinct elements of $\{1, 2,\ldots, n\}$ with respect to the set of $d$ random permutations are almost always good expanders, which we also prove. |
Sekundarne ključne besede: |
mathematics;expander graphs;permutation groups;Cayley graph;diameter;random walks; |
Vrsta dela (COBISS): |
Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: |
0 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Strani: |
32 str. |
ID: |
16458503 |