Teo Manojlović (Avtor), Tadej Tomanič (Avtor), Ivan Štajduhar (Avtor), Matija Milanič (Avtor)

Povzetek

Significance: Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD). Aim: We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images. Approach: We propose a two-component system for extracting physiological parameters from hyperspectral images. First, our system models the relationship between the measured spectra and the tissue parameters as a distribution rather than a point estimate and is thus able to generate multiple possible solutions. Second, the proposed tissue parameters are then refined using the neural network that approximates the biological tissue model. Results: The proposed model was tested on simulated and in vivo data. It outperformed current models with an overall mean absolute error of 0.0141 and can be used as a faster alternative to the IAD algorithm. Conclusions: Results suggest that Bayesian neural networks coupled with the approximation of a biological tissue model can be used to reliably and accurately extract tissue properties from hyperspectral images on the fly.

Ključne besede

medicinska fizika;hiperspektralno slikanje;nevronske mreže;medical physics;hyperspectral imaging;neural networks;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 616-073
COBISS: 223069699 Povezava se bo odprla v novem oknu
ISSN: 1083-3668
Št. ogledov: 24
Št. prenosov: 4
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: medicinska fizika;hiperspektralno slikanje;nevronske mreže;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 016004-1-016004-17
Letnik: ǂVol. ǂ30
Zvezek: ǂiss. ǂ1
Čas izdaje: 2025
DOI: 10.1117/1.JBO.30.1.016004
ID: 25739142