diplomsko delo
Abstract
Pitagorejska trojka (a,b,c) je urejena trojica naravnih števil, za katere velja, da je a^2+b^2=c^2. Namen diplomskega dela je predstaviti parametrizacijo pitagorejskih trojk z višino in presežkom in izpeljati rezultate, ki opisujejo strukturo množice pitagorejskih trojk. Prvo poglavje je namenjeno predstavitvi značilnosti grške matematike. V drugem poglavju je predstavljena parametrizacija pitagorejskih trojk z višino in presežkom, tretje poglavje pa je namenjeno obravnavi operacij na množici pitagorejskih trojk.
Keywords
matematika;pitagorejska trojka;drevesa;monoidi;grupe;množice;diplomska dela;
Data
Language: |
Slovenian |
Year of publishing: |
2012 |
Source: |
Maribor |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
Publisher: |
[V. Požun] |
UDC: |
51(043.2) |
COBISS: |
19536136
|
Views: |
1084 |
Downloads: |
98 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
HEIGHT AND EXCESS OF PYTHAGOREAN TRIPLES |
Secondary abstract: |
A Pythagorean triple (a,b,c) consists of three positive integers a, b and c, such that a^2+b^2=c^2. The purpose of this thesis is to present the height-excess enumeration of Pythagorean triples and present some results describing the set of Pythagorean triples. First chapter represents features of Greek mathematics. The second chapter represents the height-excess enumeration of Pythagorean triples. Third chapter represents algebraic operations on sets of generalized Pythagorean triples. |
Secondary keywords: |
Pythagorean triples;primitive Pythagorean triples;Barning tree;The Beauregard-Suryanarayan monoid;The Beauregard-Suryanarayan group; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za metematiko in računalništvo |
Pages: |
51 f. |
Keywords (UDC): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
1002949 |